McGrath, J. W. \& Silvidi, A. A. (1961). J. Chem. Phys. 34, 322.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.

Viola, C. (1923). Z. Kristallogr. 58, 583.
Westenbrink, H. G. K. (1926). K. Akad. Wetenschappen, Proc. Sect. Sci. 29, 1223.
Waser, J. (1951). Rev. Sci. Instrum. 22, 563.

Trioctahedral One-Layer Micas. I. Crystal Structure of a Synthetic Iron Mica*

By Gabrielle Donnay and N. Morimoto \dagger
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., U.S.A.
and Hiroshi Takeda and J. D. H. Donnay
The Johns Hopkins University, Baltimore 18, Maryland, U.S.A.

(Received 27 September 1963)
The structure of a synthetic iron mica, $\mathrm{KFe}_{3}^{2+}\left(\mathrm{Fe}^{3+} \mathrm{Si}_{3}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$, determined from visually estimated intensities, shows very slight departure from Pabst's idealized biotite structure. The sextuple cell formerly used to describe micas accounts for the observed twinning.

Introduction

The structure determination of synthetic \ddagger iron mica, 'ferri-annite', $\mathrm{KFe}_{3}^{2+}\left(\mathrm{Fe}^{3+} \mathrm{Si}_{3}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$, was begun (Donnay \& Kingman, 1958) at a time when no refined structural data were available for any member of the mica group. To understand the polymorphism of mica, it seemed essential to collect, as accurately as possible, bond lengths and angles for samples of known compositions. For that reason we began our study with an unusual synthetic mica, of relatively simple formula, prepared by Wones (1958) at the Geophysical Laboratory.

In the meantime crystal structures of four natural micas have been published. Xanthophyllite, $\mathrm{Ca}_{1.10} \mathrm{Mg}_{2.18} \mathrm{Al}_{0.72}\left(\mathrm{Al}_{2.95} \mathrm{Si}_{1.05}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$, a trioctahedral, brittle mica of type $1 M$ (Smith \& Yoder, 1956), was analyzed by Takéuchi \& Sadanaga (1959). Radoslovich (1960) refined the dioctahedral $2 M_{1}$ muscovite, $\mathrm{KAl}_{2}\left(\mathrm{AlSi}_{3}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$. Zvyagin \& Mishchenko (1962), by electron diffraction, studied a trioctahedral $1 M$ mica, $\mathrm{KMg}_{3}\left(\mathrm{AlSi}_{3}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$. An iron-rich phlogopite, $\left(\mathrm{K}_{0.9} \mathrm{Mn}_{0.1}\right) \mathrm{Mg}_{3}\left[\left(\mathrm{Fe}^{3+}, \mathrm{Mn}\right) \mathrm{Si}_{3}\right] \mathrm{O}_{10}(\mathrm{OH})_{2}$, of type $1 M$ was refined by Steinfink (1962). Apart from a slight substitution of Mn for K and Fe^{3+}, this last mica

[^0]differs from our ferri-annite only in the octahedral layer, which is occupied by Mg instead of Fe^{2+}.

The reader will be able to compare ferri-annite with these four recent structures in the light of recent theoretical discussions by Radoslovich (1959, 1961, 1962, 1963a-c) and Radoslovich \& Norrish (1962). The crystallochemical implications of our results will be considered in a forthcoming paper.

Experimental

The crystals were prepared by Wones (1958, 1963), who reports on his synthesis as follows: The crystals formed on the gas-liquid interface of a run containing gas, liquid, wïstite, and fayalite during a slow quench from $850^{\circ} \mathrm{C}$ at 2070 bars total pressure. The optical properties and powder data of these relatively large crystals are identical with those of smaller crystals formed in runs of ferri-annite composition that gave 100% yield. The weight proportions of the constituents in these runs are known with 2% accuracy, and the composition of the crystals used in this study is estimated to be known with the same accuracy. The crystals are black, euhedral, platy parallel to (001) and up to 1 mm in thickness. Their (001) cleavage is perfect. Twinning is frequent.

Cell dimensions, determined by single-crystal methods,* are: $a=5 \cdot 43, b=9 \cdot 40, c=10.32 \AA$, all three

[^1]$\pm 0 \cdot 2 \% ; \beta=100^{\circ} 0^{\prime} \pm 10^{\prime}$. The cell volume is $518 \cdot 8 \AA^{3}$; with $Z=2$ the calculated density is $3.46 \mathrm{~g} . \mathrm{cm}^{-3}$. The diffraction aspect is C^{*}, which is compatible with space groups $C 2, C m$, and $C 2 / m$.

Untwinned crystals with dimensions about $0.2 \times$ $0.2 \times 0.03 \mathrm{~mm}^{3}$ were selected for precession and Weissenberg work. $\mathrm{Fe} K \alpha(1.9373 \AA)$ and $\operatorname{Mo} K \alpha(0.7107 \AA)$ radiations were used, the latter for multiple-film non-integrating Weissenberg exposures about the a axis (zero to 6th layer) and the b axis (zero to 2nd layer). Reflections died out well inside the Mo sphere, so that we arbitrarily selected a limiting sphere of radius $1 / 1.5 \AA^{-1}$. It contains 711 independent reflections, 433 of which are actually observed.

Relative intensities were estimated visually with a comparison strip. Weak reflections that could not be estimated were given zero values. Intensities were multiplied by the Lorentz and polarization factors and were corrected for absorption. The relative \boldsymbol{F}_{o} values thus obtained were later changed to an absolute scale by comparison with the corresponding F_{c} values. Rogers \& Wilson's statistical test (1953), based on three-dimensional data, suggested the presence of a center of symmetry, which is compatible with a negative piezoelectric test performed on the Iitaka (1953) apparatus.

Determination of the crystal structure .

In view of the indications we have of a center of symmetry, \dagger we first tried space group $C 2 / m$. In this space group the general position (j) is 8 -fold. It must be chosen for the six Si and two Fe atoms because this is the only way to place these metals at the centers of the tetrahedra. The use of two 4 -fold positions is thus ruled out. (Note that we make use of the known $1 M$ mica structure.) It follows that Si and Fe^{3+} must be in complete disorder in the tetrahedral layers: each site of position (j) accommodates a statistical ion $\mathrm{Si}_{0.75} \mathrm{Fe}^{3+}{ }_{0.25}$.
An electron-density projection onto the bc plane was first computed, starting with the coordinates of the biotite structure (Pabst, 1955) and using the atomic scattering factors of International Tables for
\dagger In determining the structure of the iron-rich phlogopite, Steinfink (1962) first assumed an acentric space group, then was led to $C 2 / m$ in the course of the refinement.

X-ray Crystallography (vol. 3, p. 202). All ions were taken as completely ionized; the scattering factor of OH^{-}was taken to be equal to that of O^{2-}.

Next all three-dimensional data were used in a least-squares refinement that used only the main diagonal of the matrix. This computation was carried out on the Parametron computer PC-l at the University of Tokyo. The Busing-Levy program (ORXLS) was then employed for us by Drs Helen Ondik and S. Block at the National Bureau of Standards. Absorption corrections were applied, with the use of a program written by Dr Charles W. Burnham, and Trueblood's full-matrix least-squares program (UCLALS-l) was run on the IBM 7090 computer by Dr D. Koenig at The Johns Hopkins University. A three-dimensional electron-density series was then

Table 2. Bond lengths and angles, with standard deviations, in the tetrahedral sheet

The subscripts a, b, etc. indicate the sequence in which the equivalent points are listed in International Tables for X-ray Crystallography (1952). The O_{I} marked c^{\prime} occurs in the adjacent cell

Standard deviation

$(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\mathrm{I}}$	$1.697 \AA$	$0.007 \AA$
(Si, Fe$)-\mathrm{O}_{\mathrm{II} a}$	1.680	0.013
(Si, Fe)-OII	1.670	0.014
(Si, Fe$)-\mathrm{O}_{\mathrm{III}}$	1.691	0.011

$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{II} a}$	$2.770 \AA$	$0.017 \AA$
$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{II} f}$	2.696	0.016
$\mathrm{O}_{\mathrm{II} a-\mathrm{O}_{\mathrm{II} f}}$	2.727	0.003
$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III}}$	2.778	0.016
$\mathrm{O}_{\mathrm{II} a}-\mathrm{O}_{\mathrm{III}}$	2.758	0.016
$\mathrm{O}_{\mathrm{IIf}}-\mathrm{O}_{\mathrm{III}}$	2.773	0.016

Average $2.750 \AA$

$\mathrm{O}_{\mathrm{I}}-(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\mathrm{II} a}$	110.21°	0.75°
$\mathrm{O}_{\mathrm{I}-(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\mathrm{II} f} \text { }}$	$106 \cdot 39$	$0 \cdot 75$
$\mathrm{O}_{\mathrm{II} a^{-}}(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\mathrm{II} f}$	$109 \cdot 00$	0.45
$\mathrm{O}_{\mathrm{I}}-(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\mathrm{III}}{ }^{*}$	$110 \cdot 17$	$0 \cdot 63$
$\mathrm{O}_{\mathrm{II} a^{-}-(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\text {III }} \text { }}$	$109 \cdot 84$	0.57
$\mathrm{O}_{\mathrm{IIf}}-(\mathrm{Si}, \mathrm{Fe})-\mathrm{O}_{\mathrm{III}}$	$111 \cdot 18$	0.58
Average	109.47°	
$\mathrm{O}_{\mathrm{II} e}-\mathrm{O}_{\mathrm{II}-}-\mathrm{O}_{\mathrm{II} f}$	133.62°	$0.81{ }^{\circ}$
$\mathrm{O}_{\mathrm{I} c}-\mathrm{O}_{\mathrm{II} f}-\mathrm{O}_{\mathrm{II} a}$	107.79	0.88
$\mathrm{O}_{\mathrm{II} f}-\mathrm{O}_{\mathrm{II} a}-\mathrm{O}_{\mathrm{I} c}{ }^{\prime}$	132.05	0.91
	106.69	$0 \cdot 76$

Table 1. Atomic coordinates in synthetic iron mica

Position	Atom	x / a	$\sigma(x)$	y / b	$\sigma(y)$	z / c	$\sigma(z)$	B
2(b)	K	0	-	$\frac{1}{2}$	-	0	-	$2 \cdot 20$
2(c)	$\mathrm{Fe}_{\mathrm{I}}{ }^{2+}$	0	-	0	-	$\frac{1}{2}$	-	$0 \cdot 80$
4(h)	Feili ${ }^{2+}$	0	-	$0 \cdot 333$	$0 \cdot 0004$	$\frac{1}{2}$	-	0.88
4(i)	OH	$0 \cdot 634$	$0 \cdot 002$	0	-	$0 \cdot 401$	0.001	0.95
4(i)	O_{1}	0.015	$0 \cdot 003$	0	-	$0 \cdot 166$	0.001	1.93
8(j)	$\mathrm{O}_{\text {II }}$	$0 \cdot 820$	0.002	$0 \cdot 264$	0.002	$0 \cdot 167$	0.001	$2 \cdot 61$
8(j)	$\mathrm{O}_{\text {III }}$	0.633	0.002	$0 \cdot 334$	0.001	0.391	0.001	1.22
8(j)	$\left(\mathrm{Si}, \mathrm{Fe}^{3+}\right)$	0.575	0.001	0.333	0.0004	$0 \cdot 224$	$0 \cdot 0003$	$0 \cdot 87$

synthesized, a program written by Holden \& Block for the IBM 7090 being used. All peaks were of expected heights and the background was uniformly low. At this point ferric iron and silicon were considered half-ionized and the final computations were run on the IBM 7094 at The Johns Hopkins University; atomic coordinates were refined by the BusingLevy program, with individual isotropic temperature factors (Table 1); bond lengths, angles, and their standard deviations (Tables 2, 3, 4) were computed by means of the 'Crystallographic Function and Error' program of Busing et al. (ORFFE).

The final R index is 9.3% for the 433 observed reflections. It is 20.8% for all 711 reflections, that is when non-observed reflections (and the weak reflections that were labelled 'non-observed') are included.

Table 3. Bond lengths and angles, with standard deviations, in the octahedral sheet
Around Fe_{I}, position c, symmetry $2 / m$

		Standard deviation
$\begin{aligned} & \mathrm{Fe}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III} a} a \\ & \mathrm{Fe}_{\mathrm{I}}-\mathrm{OH}_{d} \end{aligned}$	2-123 \AA	$0.011 \AA$
	$2 \cdot 074$	0.013
	2.107 \AA	
$\begin{aligned} & \mathrm{O}_{\mathrm{III} a}-\mathrm{O}_{\mathrm{III}} \mathrm{~b} \\ & \mathrm{O}_{\mathrm{III} a}-\mathrm{OH}_{c} \end{aligned}$	3.118 \AA	0.023 A
	3.146	0.015
	3.137 \AA	
$\begin{aligned} & \mathrm{O}_{\mathrm{III} b-}-\mathrm{O}_{\mathrm{III} d^{*}} \mathrm{O}_{\mathrm{III} a-} \mathrm{OH}_{d}{ }^{*} \end{aligned}$	$2.884 \AA$	$0.021 \AA$
	2.779	0.016
Average	$2.814 \AA$	
$\left.\begin{array}{l} \mathrm{O}_{\mathrm{III} a}-\mathrm{Fe}_{\mathrm{I}}-\mathrm{OH}_{d} \\ { }^{8} 0^{\circ}-\left(\mathrm{O}_{\mathrm{III} a}-\mathrm{Fe}_{\mathrm{I}}-\mathrm{OH}_{c}\right) \end{array}\right\}$	82.92°	$0 \cdot 37^{\circ}$
$\left.\begin{array}{l} \mathrm{O}_{\mathrm{IIIb}}-\mathrm{Fe}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III} d} \\ 180^{\circ}-\left(\mathrm{O}_{\mathrm{II}-}-\mathrm{Fe}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III}}\right) \end{array}\right\}$	85.54	0.58
Around $\mathrm{Fe}_{\text {II }}$, position h, symmetry 2		
$\mathrm{Fe}_{\text {II }}-\mathrm{O}_{\text {III }}$	$2 \cdot 132 \AA$	$0.011 \AA$
$\mathrm{Fe}_{\text {II- }}-\mathrm{O}_{\text {IIIf }}$	2.112	0.011
$\mathrm{Fe}_{\text {II }}-\mathrm{OH}_{a}$	2.075	$0 \cdot 009$
	$2 \cdot 106 \AA$	
$\mathrm{O}_{\text {III }}-\mathrm{O}_{\text {III } f}$	$3 \cdot 143 \AA$	$0.012 \AA$
$\mathrm{O}_{\mathrm{III} a}-\mathrm{OH}_{a}$	3.143	0.011
$\mathrm{O}_{\mathrm{IIIf}}-\mathrm{OH}_{a}$	$3 \cdot 119$	0.015
	$3 \cdot 135 \AA$	
$\mathrm{O}_{\mathrm{III}} \mathrm{C}^{-\mathrm{O}_{\text {III }}{ }^{*}}$	$2.884 \AA$	$0.021 \AA$
$\mathrm{O}_{\mathrm{III} a^{-} \mathrm{O}_{\mathrm{III}}{ }^{*}}$	$2 \cdot 866$	0.021
$\mathrm{O}_{\mathrm{III} h}-\mathrm{OH}_{a}{ }^{*}$	2.779	0.016
$\mathrm{OH}_{a}-\mathrm{OH}_{b}{ }^{*}$	2.710	0.026
	$2 \cdot 814$ A	
$\left.\begin{array}{l} \mathrm{O}_{\mathrm{III} a}-\mathrm{Fe}_{\mathrm{II}}-\mathrm{O}_{\mathrm{III} h} \\ \mathrm{I}^{\circ} 0^{\circ}-\left(\mathrm{O}_{\mathrm{III}}-\mathrm{Fe}_{\mathrm{II}}-\mathrm{O}_{\mathrm{IIIf}}\right) \end{array}\right\}$	84.70°	0.41°
$\left.\begin{array}{l} \mathrm{O}_{\mathrm{III} h}-\mathrm{Fe}_{\mathrm{II}}-\mathrm{OH}_{a} \\ 180^{\circ}-\left(\mathrm{O}_{\mathrm{IIIf}}-\mathrm{Fe}_{\mathrm{II}}-\mathrm{OH}_{a}\right) \end{array}\right\}$	$83 \cdot 45$	$0 \cdot 46$
$\mathrm{OH}_{a}-\mathrm{Fe}_{\mathrm{II}}-\mathrm{OH}_{b}$	81.54	0.55
$\mathrm{O}_{\mathrm{III} a}-\mathrm{Fe}_{\text {II }}-\mathrm{O}_{\text {III }}$	$85 \cdot 14$	$0 \cdot 60$
$\mathrm{O}_{\mathrm{III} a}-\mathrm{Fe}_{\text {II }}-\mathrm{OH}_{a}$	96.69	$0 \cdot 42$
* Shared edge.		

Because the observed intensities are known to only about 15%, further refinement with anisotropic temperature factors is not warranted.

Table 4. Bond lengths and angles, with standard deviations, in the interlayer

$\begin{aligned} & \mathrm{K}-\mathrm{O}_{\mathrm{I} c} \\ & \mathrm{~K}-\mathrm{O}_{\mathrm{II} a} \end{aligned}$		$3.015 \AA$	$0.016 \AA$
		3.074	0.014
	Average	$3.054 \AA$	
$\begin{aligned} & \mathrm{K}-\mathrm{O}_{\mathrm{Ic}}{ }^{\prime} \\ & \mathrm{K}-\mathrm{O}_{\mathrm{II}} \end{aligned}$		$3.378 \AA$	$0.015 \AA$
		$3 \cdot 332$	0.014
	Average	$3 \cdot 347$ A	
$\begin{aligned} & \mathrm{O}_{\mathrm{I} c}-\mathrm{O}_{\mathrm{I} d} \\ & \mathrm{O}_{\mathrm{II} c}-\mathrm{O}_{\mathrm{IIIf}} \end{aligned}$		$3 \cdot 393$ A	$0.029 \AA$
		$3 \cdot 411$	0.024
	Average	$3 \cdot 402$ A	

The standard deviations are listed as computed even though their significance may be dubious: in his invited paper on Structure refinement, at the Sixth International Congress of Crystallography (Rome, 1963) Dr R. E. Marsh pointed out the unreliability of standard deviations in cases where R exceeds 5\%.

The orthogonal sextuple cell

The cell used in a preliminary report on ferri-annite (Donnay \& Kingman, 1958) is a multiple cell, which can be obtained from our structural cell by the matrix transformation $\overline{1} 00 / 0 \overline{1} 0 / 103$. (The inverse matrix, structural cell from multiple cell, is $\overline{1} 00 / 0 \overline{\mathrm{I}} 0 / \frac{1}{3} 0 \frac{1}{3}$.) Not only is it C-centered; it also contains additional nodes at $\frac{1}{3} 0 \frac{1}{3}, \frac{2}{3} 0 \frac{2}{3}, \frac{5}{6} \frac{1}{2} \frac{1}{3}, \frac{1}{6} \frac{1}{2} \frac{2}{3}$. Whereas the structural cell is a double cell, the large cell is sextuple. It is very close to being trirectangular.

In reciprocal space the three rows that are quasiperpendicular are: [30 $]^{*},[010]^{*}$, and [001]*. The net (103)*, which contains $3 h, k, \hbar$ reflections, coincides nearly (within 6^{\prime}) with the cleavage plane (001) and is therefore easily photographed on the precession camera. It contains the first two of the above rows and has pronounced pseudohexagonal symmetry. Reflections 060 and $33 \overline{1}$ and the symmetry-related ones, $3 \overline{3} \overline{1}, 0 \overline{6} 0, \overline{3} \overline{3} 1, \overline{3} 31$, have equal intensities and outline a hexagon. Only on exceptionally long exposures do other reflections appear without accompanying reflections to simulate hexagonal symmetry. These reflections are 020 and 040. They show that c^{*} is not a 3 - or 6 -fold axis of symmetry and that $l l 2$ is the symmetry of the net. But if the specimen is twinned by a rotation of 120° about the c^{*} axis (see discussion below), it could easily be mistaken for a $3 T$ mica.

Let us consider the sextuple cell for which the following dimensions were measured from precession
films : $a^{\prime}=5 \cdot 43, b^{\prime}=9 \cdot 40, c^{\prime}=30 \cdot 49, \beta^{\prime}=90^{\circ} 0^{\prime}\left(90^{\circ} 6^{\prime}\right.$, if calculated from the β of $100^{\circ} 0^{\prime}$ of the structural cell). Let $h^{\prime} k^{\prime} l^{\prime}$ be the indices of a reflection referred to this large cell. In order to escape destructive interference, the $h^{\prime} k^{\prime} l^{\prime}$ reflections must fulfil the condition $h^{\prime}+3 k^{\prime}+4 l^{\prime}=0 \bmod .6$, which includes the following two : $h^{\prime}+k^{\prime}=0 \bmod .2$ and $h^{\prime}+l^{\prime}=0 \bmod$. 3. In that system of indexing, $h^{\prime} 00$ would appear only as 600 , $12,0,0$, etc. If now we take into account the pseudohexagonal character of the lattice (not the crystal structure) and apply matrix $100 / \frac{1}{2} \frac{1}{2} 0 / \frac{1}{2} \frac{1}{2} 0 / 001$ to go over to a hexagonal system of coordinates, with indices $H K I L$, the criterion becomes $H+L=0$ mod. 3 . Such criteria should be useful as danger signals. A b-axis zero-layer Weissenberg photograph, on which 200 will appear as a strong reflection, will remove all ambiguity.

Although the sextuple monoclinic cell is, structurally, three layers high, the mica need not be of type $3 M$. Ferri-annite, for instance, is a mica of type $1 M$, not $3 M$ as was erroneously surmised in the preliminary report.

The sextuple cell has been used to describe all micas until the advent of X-ray crystallography (see Dana's 'System' of 1892, for example). It offers a special advantage in the description of twinning, as it is the cell of the twin lattice, that is, the multiple lattice (superlattice) whose pseudo-symmetry elements are possible twin elements.

Twinning

Peacock (1943), after Friedel (1904, p. 222), has shown that the mica twin law must be defined by a 180° rotation around a twin axis, [310] or [110], and not by a reflection in a twin plane (110) or (130) (referred to the sextuple cell), because the composition surface is parallel to the cleavage plane (001), which contains the twin axes. Planes (110) and (130) in the sextuple cell become ($33 \overline{\mathrm{l}}$) and ($39 \overline{\mathrm{l}}$) in the $1 M$ cell.

As to twins by $n .60^{\circ}(n=1,2, \ldots, 5)$ around the axis of hexagonal pseudo-symmetry, [001] in the old cell, [103] in the $1 M$ cell, they cannot be distinguished from twins that would result from such rotations around the normal to the cleavage plane (c^{*} axis in the $1 M$ setting) because the angle [103]:[001]* is 6^{\prime} or less. Consider the precession film $(103)_{0}^{*}$ again. When the row of the $0 k 0$ reflections is repeated by a 60° rotation, the same result could have been obtained by a 240° rotation. Likewise 120° and 300° rotations are undistinguishable. It will be shown in the next paragraph that, in the first case, the twin axis can be either [$1 \overline{1} 0$] or [310]; and in the second case, it can be either [310] or [110]. Finally the appearance of a precession photograph (103)* of a single crystal would not change were the row [010]* to be repeated by a 180° rotation; this means that
the existence of the twin axis [100] cannot be detected on a (103) ${ }_{0}^{*}$ photograph.

Let us refer ferri-annite to the $1 M$ cell. Five possible twin operations can be described as rotations around $c^{*}[001]^{*}$ through the following angles: $2 \varphi[\overline{1} 10], 2 \varphi[\overline{3} 10], 180^{\circ}=2 \varphi[\overline{1} 00], 2 \varphi[\overline{3} \overline{1} 0]$, and $2 \varphi[\overline{1} \overline{1} 0]$, where $\varphi[u v w]$ is defined as the counter-clockwise angle

Fig. 1. Orthogonal projection of tetrahedral sheets onto (001). Open circles are potassium ions; dashed lines represent the top tetrahedral sheet in the cell below. Note ditrigonal symmetry of six-membered tetrahedral ring.

Fig. 2. Orthogonal projection of the octahedral sheet onto (001). Note pseudo 3 -fold axes through Fe^{2+} octahedra.
[010]:[uvw]. The angle $\varphi[\overline{3} 10]$ is found to be $60^{\circ}+\varepsilon$, with $\varepsilon=1^{\prime}$ from single-crystal data and $\varepsilon=10^{\prime \prime}$ from refined powder data. Likewise, $\varphi[\overline{1} 10]=30^{\circ}+\varepsilon$, $\varphi[\overline{1} 00]=90^{\circ}, \varphi[\overline{3} \overline{1} 0]=120^{\circ}-\varepsilon, \varphi[\overline{1} \overline{1} 0]=150^{\circ}-\varepsilon$. As can be shown by Euler's theorem, these unorthodox twin operations, each premultiplied by a 180° rotation around the symmetry axis $b[010]$, are rigorously
equivalent to 180° rotations around [1 $\left.\overline{1} 0\right],[3 \overline{1} 0],[100]$, [310], [110], respectively. Sadanaga \& Takéuchi (1961) postulate the strict equivalence of the latter (twin rotations) with rotations around c^{*} through $60^{\circ}, 120^{\circ}$, $180^{\circ}, 240^{\circ}, 300^{\circ}$. As shown above, the angles other than 180° differ from the stated values by 2ε.

Fig. 3. Orthogonal projection of complete cell onto plane perpendicular to a axis. Open circles are potassium ions; small solid circles, ($\mathrm{Si}, \mathrm{Fe}^{3+}$) ions. Note flattening of octahedra into trigonal antiprisms.

The equivalence of the 180° rotation around a twin axis lying in (001) with a rotation around c^{*} through a multiple of 60° is the key to the mechanism of twinning, which thus turns out to be similar to that postulated by Smith \& Yoder (1956) to explain the formation of mica polymorphs.

We wish to thank Drs Helen Ondik, S. Block, and D. Koenig for their help in computation and for many discussions, and Dr E. W. Radoslovich, who read the manuscript and made many useful comments.

References

Donnay, G. \& Kingman, P. (1958). Carnegie Inst. Wash. Year Book 57, 252.
Friedel, G. (1904). Groupements cristallins, SaintEtienne.
Ittaka, Y. (1953). Acta Cryst. 6, 663.
International Tables for X-ray Crystallography (1952). Vol. I, p. 95. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Levi, G. R. \& Ferrari, A. (1921). R.C. Accad. Lincei, 33, 397.
Pabst, A. (1955). Amer. Min. 40, $967 .^{\text {a }}$
Peacock, M. A. (1943). Univ Toronto Studies in Min. 48, 65.
Radoslovich, E. W. (1959). Nature, Lond. 183, 253.
Radoslovici, E. W. (1960). Acta Cryst. 13, 919.
Radoslovich, E. W. (1961). Nature, 191, 67.
Radoslovich, E. W. (1962). Amer. Min. 47, 617.
Radoslovich, E. W. (1963a). Amer. Min. 48, 76.
Radoslovich, E. W. (1963b). Amer. Min. 48, 348.
Radoslovich, E. W. (1963c). Amer, Min. 48, 368.
Radoslovich, E. W. \& Norrish, K. (1962). Amer. Min. 47, 599.
Rogers, D. \& Wilson, A. J. C. (1953). Acta Cryst. 6, 439.

Sadanaga, R. \& Takéuchi, Y. (1961). Z. Kristallogr. 116, 406.
Smith, J. V. \& Yoder, H. S. (1956). Miner. Mag. 31, 209.

Steinfink, H. (1962). Amer. Min. 47, 886.
Takéuchi, Y. \& Sadanaga, R. (1959). Acta Cryst. 12, 945.

Wones, D. R. (1958). Carnegie Inst. Wash. Year Book 57, 195.
Wones, D. R. (1963). Amer. J. Sci., 261, 581.
Zvyagin, B. B. \& Mishchenko, K. S. (1962). Kristallografiya, 7, 623.

[^0]: * Work supported by the National Science Foundation, through a grant to the Johns Hopkins University (G 7375).
 \dagger Present address: Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
 \ddagger Because this composition has not been found in nature, it would be better not to designate it by a mineral name. This is the reason for the quotation marks that enclose ferriannite, the first time the name appears in the text.

[^1]: * The cell dimensions have since been refined by Wones (1963) from powder data by least squares: $u=5 \cdot 430 \pm 0 \cdot 002$, $b=9 \cdot 404 \pm 0 \cdot 005, c=10.34 \mathrm{I} \pm 0.003, \beta=100^{\circ} 4^{\prime} \pm 10^{\prime}$. The cell volume is $519 \cdot 9 \AA^{3}$ and the calculated density is $3 \cdot 45 \mathrm{~g} . \mathrm{cm}^{-3}$.

